Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Toxicol Pathol ; 51(7-8): 405-413, 2023 Oct.
Article En | MEDLINE | ID: mdl-37982363

Drug-induced liver injury (DILI) remains a major concern in drug development from a patient safety perspective because it is the leading cause of acute liver failure. One mechanism of DILI is altered bile acid homeostasis and involves several hepatic bile acid transporters. Functional impairment of some hepatic bile acid transporters by drugs, disease, or genetic mutations may lead to toxic accumulation of bile acids within hepatocytes and increase DILI susceptibility. This review focuses on the role of hepatic bile acid transporters in DILI. Model systems, primarily in vitro and modeling tools, such as DILIsym, used in assessing transporter-mediated DILI are discussed. Due to species differences in bile acid homeostasis and drug-transporter interactions, key aspects and challenges associated with the use of preclinical animal models for DILI assessment are emphasized. Learnings are highlighted from three case studies of hepatotoxic drugs: troglitazone, tolvaptan, and tyrosine kinase inhibitors (dasatinib, pazopanib, and sorafenib). The development of advanced in vitro models and novel biomarkers that can reliably predict DILI is critical and remains an important focus of ongoing investigations to minimize patient risk for liver-related adverse reactions associated with medication use.


Carrier Proteins , Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Membrane Glycoproteins , Animals , Humans , Chemical and Drug Induced Liver Injury/etiology , Bile Acids and Salts
2.
Front Pharmacol ; 14: 1147495, 2023.
Article En | MEDLINE | ID: mdl-37033614

The sodium taurocholate cotransporting polypeptide (NTCP; gene name SLC10A1) is the primary hepatic basolateral uptake transporter for conjugated bile acids and the entry receptor for the hepatitis B and D virus (HBV/HDV). Regulation of human NTCP remains a knowledge gap due to significant species differences in substrate and inhibitor selectivity and plasma membrane expression. In the present study, various kinase inhibitors were screened for inhibition of NTCP function and taurocholate (TCA) uptake using NTCP-transfected HuH-7 cells. This study identified everolimus, an mTOR inhibitor and macrocyclic immunosuppressive drug, as an NTCP inhibitor with modest potency (IC50 = 6.7-8.0 µM). Further investigation in differentiated HuH-7 cells expressing NTCP and NTCP-overexpressing Flp-In T-REx 293 cells revealed that the mechanism of action of everolimus on NTCP is direct inhibition and mTOR-independent. Structural analogs of everolimus inhibited NTCP-mediated TCA uptake, however, functional analogs did not affect NTCP-mediated TCA transport, providing further evidence for direct inhibition. This work contributes to the growing body of literature suggesting that NTCP-mediated bile acid uptake may be inhibited by macrocyclic peptides, which may be further exploited to develop novel medications against HBV/HDV.

3.
Sci Rep ; 12(1): 14333, 2022 08 22.
Article En | MEDLINE | ID: mdl-35995956

Hepatic cell lines serve as economical and reproducible alternatives for primary human hepatocytes. However, the utility of hepatic cell lines to examine bile acid homeostasis and cholestatic toxicity is limited due to abnormal expression and function of bile acid-metabolizing enzymes, transporters, and the absence of canalicular formation. We discovered that culturing HuH-7 human hepatoma cells with dexamethasone (DEX) and 0.5% dimethyl sulfoxide (DMSO) for two weeks, with Matrigel overlay after one week, resulted in a shorter and improved differentiation process. These culture conditions increased the expression and function of the major bile acid uptake and efflux transporters, sodium taurocholate co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP), respectively, in two-week cultures of HuH-7 cells. This in vitro model was further characterized for expression and function of bile acid-metabolizing enzymes, transporters, and cellular bile acids. Differentiated HuH-7 cells displayed a marked shift in bile acid composition and induction of cytochrome P450 (CYP) 7A1, CYP8B1, CYP3A4, and bile acid-CoA: amino acid N-acyltransferase (BAAT) mRNAs compared to control. Inhibition of taurocholate uptake and excretion after a 24-h treatment with prototypical cholestatic drugs suggests that differentiated HuH-7 cells are a suitable model to examine cholestatic hepatotoxicity.


Chemical and Drug Induced Liver Injury , Cholestasis , Symporters , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Cholestasis/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Membrane Transport Proteins/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Taurocholic Acid/metabolism
4.
Clin Pharmacol Ther ; 112(3): 461-484, 2022 09.
Article En | MEDLINE | ID: mdl-35390174

Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post-translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation-mediated changes in transporter function on drug disposition and response.


Carrier Proteins , Membrane Transport Proteins , Biological Transport , Carrier Proteins/metabolism , Gene Expression Regulation , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Pharmaceutical Preparations , Receptors, Cytoplasmic and Nuclear/genetics
5.
J Pharmacol Exp Ther ; 380(2): 114-125, 2022 02.
Article En | MEDLINE | ID: mdl-34794962

Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.


Antineoplastic Agents/toxicity , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/drug effects , Protein Kinase Inhibitors/toxicity , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Cells, Cultured , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Dasatinib/toxicity , Hepatocytes/metabolism , Humans , Indazoles/toxicity , Organic Anion Transporters, Sodium-Dependent/metabolism , Pyrimidines/toxicity , Sorafenib/toxicity , Sulfonamides/toxicity , Symporters/metabolism
6.
J Pharm Sci ; 110(1): 404-411, 2021 01.
Article En | MEDLINE | ID: mdl-33058892

Recent studies have focused on coproporphyrin (CP)-I and CP-III (CPs) as endogenous biomarkers for organic anion transporting polypeptides (OATPs). Previous data showed that CPs are also substrates of multidrug resistance-associated protein (MRP/Mrp) 2 and 3. This study was designed to examine the impact of loss of Mrp2 function on the routes of excretion of endogenous CPs in wild-type (WT) Wistar compared to Mrp2-deficient TR- rats. To exclude possible confounding effects of rat Oatps, the transport of CPs was investigated in Oatp-overexpressing HeLa cells. Results indicated that CPs are substrates of rodent Oatp1b2, and that CP-III is a substrate of Oatp2b1. Quantitative targeted absolute proteomic (QTAP) analysis revealed no differences in Oatps, but an expected significant increase in Mrp3 protein levels in TR- compared to WT rat livers. CP-I and CP-III concentrations measured by LC-MS/MS were elevated in TR- compared to WT rat liver, while CP-I and CP-III estimated biliary clearance was decreased 75- and 840-fold in TR- compared to WT rats, respectively. CP-III concentrations were decreased 14-fold in the feces of TR- compared to WT rats, but differences in CP-I were not significant. In summary, the disposition of CPs was markedly altered by loss of Mrp2 and increased Mrp3 function as measured in TR- rats.


Coproporphyrins , Proteomics , Animals , Chromatography, Liquid , HeLa Cells , Humans , Liver , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Rats , Rats, Wistar , Tandem Mass Spectrometry
8.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Article En | MEDLINE | ID: mdl-31819276

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Cleavage And Polyadenylation Specificity Factor/metabolism , Leukemia, Myeloid, Acute/metabolism , RNA Precursors/metabolism , Sarcoma, Ewing/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Carboxylic Ester Hydrolases/metabolism , Cell Line, Tumor , Cell Survival , Cleavage And Polyadenylation Specificity Factor/genetics , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Phenotype , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Piperazines/pharmacology , Protein Binding , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Sarcoma, Ewing/drug therapy
9.
Drug Metab Dispos ; 47(10): 1222-1230, 2019 10.
Article En | MEDLINE | ID: mdl-31371422

Human hepatoma cell lines are useful for evaluation of drug-induced hepatotoxicity, hepatic drug disposition, and drug-drug interactions. However, their applicability is compromised by aberrant expression of hepatobiliary transporters. This study was designed to evaluate whether extracellular matrix (Matrigel) overlay and dexamethasone (DEX) treatment would support cellular maturation of long-term HuH-7 hepatoma cell cultures and improve the expression, localization, and activity of canalicular ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and bile salt export pump (BSEP/ABCB11). Matrigel overlay promoted the maturation of HuH-7 cells toward cuboidal, hepatocyte-like cells displaying bile canaliculi-like structures visualized by staining for filamentous actin (F-actin), colocalization of MRP2 with F-actin, and by accumulation of the MRP2 substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) within the tubular canaliculi. The cellular phenotype was rather homogenous in the Matrigel-overlaid cultures, whereas the standard HuH-7 cultures contained both hepatocyte-like cells and flat epithelium-like cells. Only Matrigel-overlaid HuH-7 cells expressed MDR1 at the canaliculi and excreted the MDR1 probe substrate digoxin into biliary compartments. DEX treatment resulted in more elongated and branched canaliculi and restored canalicular expression and function of BSEP. These findings suggest that hepatocyte polarity, elongated canalicular structures, and proper localization and function of canalicular ABC transporters can be recovered, at least in part, in human hepatoma HuH-7 cells by applying the modified culture conditions. SIGNIFICANCE STATEMENT: We report the first demonstration that proper localization and function of canalicular ABC transporters can be recovered in human hepatoma HuH-7 cells by modification of cell culture conditions. Matrigel overlay and dexamethasone supplementation increased the proportion of hepatocyte-like cells, strongly augmented the canalicular structures between the cells, and restored the localization and function of key canalicular ABC transporters. These results will facilitate the development of reproducible, economical, and easily achievable liver cell models for drug development.


ATP-Binding Cassette Transporters/metabolism , Bile Canaliculi/metabolism , Cell Culture Techniques/methods , Culture Media/pharmacology , Bile Canaliculi/drug effects , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Collagen/pharmacology , Dexamethasone/pharmacology , Drug Combinations , Drug Evaluation, Preclinical/methods , Drug Interactions , Humans , Laminin/pharmacology , Multidrug Resistance-Associated Protein 2 , Proteoglycans/pharmacology
10.
J Med Chem ; 60(7): 2790-2818, 2017 04 13.
Article En | MEDLINE | ID: mdl-28296398

Tetrahydroisoquinoline 40 has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ 40 and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ 40 in a MCF-7 human breast cancer xenograft model.


Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast/drug effects , Estrogen Receptor alpha/antagonists & inhibitors , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/therapeutic use , Acrylates/chemistry , Acrylates/pharmacokinetics , Acrylates/pharmacology , Acrylates/therapeutic use , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Dogs , Drug Discovery , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Mice, Inbred C57BL , Molecular Docking Simulation , Proteolysis/drug effects , Tetrahydroisoquinolines/pharmacokinetics , Tetrahydroisoquinolines/pharmacology
11.
Clin Cancer Res ; 23(4): 1012-1024, 2017 Feb 15.
Article En | MEDLINE | ID: mdl-28151717

Purpose: Although significant progress has been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), many patients will require additional therapy for relapsed/refractory disease. Cyclin D3 (CCND3) and CDK6 are highly expressed in T-ALL and have been effectively targeted in mutant NOTCH1-driven mouse models of this disease with a CDK4/6 small-molecule inhibitor. Combination therapy, however, will be needed for the successful treatment of human disease.Experimental Design: We performed preclinical drug testing using a panel of T-ALL cell lines first with LEE011, a CDK4/6 inhibitor, and next with the combination of LEE011 with a panel of drugs relevant to T-ALL treatment. We then tested the combination of LEE011 with dexamethasone or everolimus in three orthotopic mouse models and measured on-target drug activity.Results: We first determined that both NOTCH1-mutant and wild-type T-ALL are highly sensitive to pharmacologic inhibition of CDK4/6 when wild-type RB is expressed. Next, we determined that CDK4/6 inhibitors are antagonistic when used either concurrently or in sequence with many of the drugs used to treat relapsed T-ALL (methotrexate, mercaptopurine, asparaginase, and doxorubicin) but are synergistic with glucocorticoids, an mTOR inhibitor, and gamma secretase inhibitor. The combinations of LEE011 with the glucocorticoid dexamethasone or the mTOR inhibitor everolimus were tested in vivo and prolonged survival in three orthotopic mouse models of T-ALL. On-target activity was measured in peripheral blood and tissue of treated mice.Conclusions: We conclude that LEE011 is active in T-ALL and that combination therapy with corticosteroids and/or mTOR inhibitors warrants further investigation. Clin Cancer Res; 23(4); 1012-24. ©2016 AACRSee related commentary by Carroll et al., p. 873.


Aminopyridines/administration & dosage , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Purines/administration & dosage , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 4/genetics , Dexamethasone/administration & dosage , Drug Synergism , Everolimus/administration & dosage , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/pathology , TOR Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays
12.
Drug Metab Dispos ; 44(8): 1304-12, 2016 08.
Article En | MEDLINE | ID: mdl-27190057

Although ocular transport and delivery have been well studied, metabolism in the eye is not well documented, even for clinically available medications such as levobunolol, a potent and nonselective ß-adrenergic receptor antagonist. Recently, we reported an in vitro methodology that could be used to evaluate ocular metabolism across preclinical species and humans. The current investigation provides detailed in vitro ocular and liver metabolism of levobunolol in rat, rabbit, and human S9 fractions, including the formation of equipotent active metabolite, dihydrolevobunolol, with the help of high-resolution mass spectrometry. 11 of the 16 metabolites of levobunolol identified herein, including a direct acetyl conjugate of levobunolol observed in all ocular and liver fractions, have not been reported in the literature. The study documents the identification of six human ocular metabolites that have never been reported. The current investigation presents evidence for ocular and hepatic metabolism of levobunolol via non-cytochrome P450 pathways, which have not been comprehensively investigated to date. Our results indicated that rat liver S9 and human ocular S9 fractions formed the most metabolites. Furthermore, liver was a poor in vitro surrogate for eye, and rat and rabbit were poor surrogates for human in terms of the rate and extent of levobunolol metabolism.


Adrenergic beta-Antagonists/metabolism , Eye/metabolism , Levobunolol/metabolism , Acetylation , Adrenergic beta-Antagonists/chemistry , Animals , Biotransformation , Humans , Kinetics , Levobunolol/analogs & derivatives , Levobunolol/chemistry , Liver/metabolism , Male , Molecular Structure , Organ Specificity , Rabbits , Rats, Sprague-Dawley
13.
J Biomol Screen ; 21(6): 620-5, 2016 Jul.
Article En | MEDLINE | ID: mdl-26903406

A new analysis approach was evaluated for measuring plasma protein binding (PPB) of small molecules using the Agilent RapidFire high-throughput system coupled with a Sciex API 4000 mass spectrometer (RF-MS/MS). Thirty-three proprietary and 12 literature compounds were subjected to rapid equilibrium dialysis (RED) and evaluated in parallel using RF-MS/MS at 16.4 s/sample and traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS) at 3.5 min/sample, thus making the RF-MS/MS analysis over 12 times faster than LC-MS/MS. The high-throughput analysis method that was developed demonstrated excellent correlation with the traditional LC-MS/MS analysis method with an r(2) value of 0.96. The RF-MS/MS analysis method was implemented to increase sample throughput, decrease turnaround time for PPB data, and decrease time burden on existing LC-MS/MS instruments.


Chromatography, Liquid/methods , High-Throughput Screening Assays/methods , Proteins/chemistry , Tandem Mass Spectrometry/methods , Humans , Protein Binding , Proteins/antagonists & inhibitors , Solid Phase Extraction
...